Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Folia Microbiol (Praha) ; 69(1): 91-99, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38017300

ABSTRACT

Bacillus thuringiensis (Bt) is known for its Cry and Vip3A pesticidal proteins with high selectivity to target pests. Here, we assessed the potential of a novel neotropical Bt strain (UFT038) against six lepidopteran pests, including two Cry-resistant populations of fall armyworm, Spodoptera frugiperda. We also sequenced and analyzed the genome of Bt UFT038 to identify genes involved in insecticidal activities or encoding other virulence factors. In toxicological bioassays, Bt UFT038 killed and inhibited the neonate growth in a concentration-dependent manner. Bt UFT038 and HD-1 were equally toxic against S. cosmioides, S. frugiperda (S_Bt and R_Cry1 + 2Ab populations), Helicoverpa zea, and H. armigera. However, larval growth inhibition results indicated that Bt UFT038 was more toxic than HD-1 to S. cosmioides, while HD-1 was more active against Chrysodeixis includens. The draft genome of Bt UFT038 showed the cry1Aa8, cry1Ac11, cry1Ia44, cry2Aa9, cry2Ab35, and vip3Af5 genes. Besides this, genes encoding the virulence factors (inhA, plcA, piplC, sph, and chi1-2) and toxins (alo, cytK, hlyIII, hblA-D, and nheA-C) were also identified. Collectively, our findings reveal the potential of the Bt UFT038 strain as a source of insecticidal genes against lepidopteran pests, including S. cosmioides and S. frugiperda.


Subject(s)
Bacillus thuringiensis , Insecticides , Moths , Animals , Humans , Infant, Newborn , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Glycine max , Endotoxins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Hemolysin Proteins/pharmacology , Insecticides/pharmacology , Insecticides/metabolism , Spodoptera/metabolism , Larva , Virulence Factors/metabolism , Pest Control, Biological
2.
Sci Rep ; 10(1): 5518, 2020 03 26.
Article in English | MEDLINE | ID: mdl-32218451

ABSTRACT

Bacillus thuringiensis serovar israelensis (Bti) is used to control insect vectors of human and animal diseases. In the present study, the toxicity of four strains of Bti, named T0124, T0131, T0137, and T0139, toward Aedes aegypti and Culex quinquefasciatus larvae was analyzed. The T0131 strain showed the highest larvicidal activity against A. aegypti (LC50 = 0.015 µg/ml) and C. quinquefasciatus larvae (LC50 = 0.035 µg/ml) when compared to the other strains. Furthermore, the genomic sequences of the four strains were obtained and compared. These Bti strains had chromosomes sizes of approximately 5.4 Mb with GC contents of ~35% and 5472-5477 putative coding regions. Three small plasmids (5.4, 6.8, and 7.6 kb) and three large plasmids (127, 235, and 359 kb) were found in the extrachromosomal content of all four strains. The SNP-based phylogeny revealed close relationship among isolates from this study and other Bti isolates, and SNPs analysis of the plasmids 127 kb did not reveal any mutations in δ-endotoxins genes. This newly acquired sequence data for these Bti strains may be useful in the search for novel insecticidal toxins to improve existing ones or develop new strategies for the biological control of important insect vectors of human and animal diseases.


Subject(s)
Aedes/parasitology , Bacillus thuringiensis/classification , Chromosomes, Bacterial/genetics , Culex/parasitology , Genomics/methods , Whole Genome Sequencing/methods , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis/immunology , Bacillus thuringiensis Toxins/genetics , Base Composition , Endotoxins/genetics , Genome Size , Hemolysin Proteins/genetics , Larva/parasitology , Mosquito Vectors/parasitology , Phylogeny , Plasmids/genetics , Polymorphism, Single Nucleotide , Serogroup
SELECTION OF CITATIONS
SEARCH DETAIL
...